# THERMODYNAMICS OF ALCOHOL SOLUTIONS. EXCESS MOLAR ENTHALPIES OF BINARY AND TERNARY MIXTURES CONTAINING TWO ALCOHOLS

#### ISAMU NAGATA \* and KOHKI GOTOH

Department of Chemical Engineering, Kanazawa University, Kanazawa 920 (Japan) (Received 3 December 1985)

#### ABSTRACT

The UNIQUAC associated-solution theory is used to calculate excess molar enthalpies for binary and ternary mixtures including two aliphatic alcohols. The theory postulates that linear mixed polymers are formed by consecutive solvation reactions. This approach makes it possible to reproduce excess molar enthalpies for binary alcohol-alcohol mixtures well and to predict ternary excess molar enthalpies for mixtures containing two alcohols and one saturated hydrocarbon from binary parameters alone.

## INTRODUCTION

In a previous paper [1], the UNIQUAC associated-solution theory has been improved to reproduce the vapor-liquid equilibria of binary alcohol-alcohol mixtures well and to predict vapor-liquid and liquid-liquid equilibria for ternary mixtures of two alcohols with one unassociated component from binary phase equilibrium data alone. The model postulates the formation of linear multisolvated complexes from *i*-mers of two alcohols. This paper shows the quantitative quality of the new model in the correlation of binary excess molar enthalpies for alcohol-alcohol mixtures and the prediction of the ternary excess molar enthalpies of mixtures containing two alcohols and one saturated hydrocarbon from binary parameters alone.

## THEORY

A, B and C stand for alcohols and a saturated hydrocarbon. We assume that alcohols self-associate and solvate each other to form linear polymers and that the equilibrium constants are independent of the degree of associa-

0040-6031/86/\$03.50 © 1986 Elsevier Science Publishers B.V.

<sup>\*</sup> Author to whom correspondence should be addressed.

tion and solvation. The association constant  $K_A$  for the stepwise reaction  $A_i + A_1 = A_{i+1}$  and  $K_B$  for  $B_i + B_1 = B_{i+1}$  are defined by

$$K_{A} = \frac{\Phi_{A_{i+1}}}{\Phi_{A_{i}}\Phi_{A_{1}}} \frac{i}{i+1}$$
(1)  
$$K_{B} = \frac{\Phi_{B_{i+1}}}{\Phi_{B_{i}}\Phi_{B_{1}}} \frac{i}{i+1}$$
(2)

We postulate that the solvation equilibria have the following form  $A_i + B_j = A_i B_j$   $B_i + A_j = B_i A_j$   $A_i B_j + A_k = A_i B_j A_k$   $B_i A_j + B_k = B_i A_j B_k$  $A_i B_i A_k + B_j = A_j B_i A_k B_j$   $B_i A_j B_k + A_j = B_i A_j B_k A_j$ 

The solvation equilibrium constant for these reactions is given by  $K_{AB}$ . For the  $A_i B_j A_k B_l$  forming reaction

$$K_{AB} = \frac{\Phi_{A,B,A,B_{I}}}{\Phi_{A,B,A,\Phi}} \frac{r_{A,B,A,F_{I}}}{r_{A,B,A,B_{I}}r_{A}r_{B}}$$
(3)

A further assumption is that the structural parameters of complex  $A_i B_j A_k B_l$ are given by those of the corresponding units:  $r_{A,B,A_kB_l} = ir_A + jr_B + kr_A + lr_B$ ,  $q_{A,B,A_kB_l} = iq_A + jq_B + kq_A + lq_B$  and these relations hold for other complexes.

The UNIQUAC associated-solution theory gives the excess molar enthalpy of ternary mixtures containing two alcohols and one saturated hydrocarbon as the sum of a chemical and a physical part.

$$H^{\rm E} = H^{\rm E}_{\rm chem} + H^{\rm E}_{\rm phys} \tag{4}$$

$$H_{\rm chem}^{\rm E}$$
 is defined as

$$H_{\rm chem}^{\rm E} = H_{\rm f} - x_{\rm A} H_{\rm fA}^0 - x_{\rm B} H_{\rm fB}^0 \tag{5}$$

where  $H_{\rm f}$  is the total enthalpy of complex formation,  $H_{\rm fA}^0$  is the value of  $H_{\rm f}$  at pure state of alcohol A and  $H_{\rm fB}^0$  is that at pure state of alcohol B. Expressions for  $H_{\rm f}$ ,  $H_{\rm fA}^0$  and  $H_{\rm fB}^0$  are derived in the Appendix and substituting these expressions into eqn. (5) yields

$$\begin{split} H_{\text{chem}}^{\text{E}} &= h_{\text{A}} x_{\text{A}} \left( \frac{\overline{U}_{\text{A}} \Phi_{\text{A}_{1}}}{\Phi_{\text{A}}} - \overline{U}_{\text{A}}^{0} \Phi_{\text{A}_{1}}^{0} \right) + h_{\text{B}} x_{\text{B}} \left( \frac{\overline{U}_{\text{B}} \Phi_{\text{B}_{1}}}{\Phi_{\text{B}}} - \overline{U}_{\text{B}}^{0} \Phi_{\text{B}_{1}}^{0} \right) \\ &+ \left[ h_{\text{A}} \left\{ \frac{\overline{U}_{\text{A}}}{K_{\text{A}\text{B}} U_{\text{A}}} \left( \frac{x_{\text{B}}}{\Phi_{\text{B}} r_{\text{A}}} + \frac{x_{\text{A}}}{\Phi_{\text{A}} r_{\text{B}}} \right) + \frac{\overline{U}_{\text{A}} x_{\text{A}} \Phi_{\text{A}_{1}}}{\Phi_{\text{A}}} \left( 2 - r_{\text{A}} r_{\text{B}} K_{\text{A}\text{B}}^{2} \Phi_{\text{A}_{1}} \Phi_{\text{B}_{1}} U_{\text{A}} U_{\text{B}} \right) \right. \\ &+ \frac{\overline{U}_{\text{A}} U_{\text{B}} x_{\text{B}} \Phi_{\text{B}_{1}}}{U_{\text{A}} \Phi_{\text{B}}} \right\} + h_{\text{B}} \left\{ \frac{\overline{U}_{\text{B}}}{K_{\text{A}\text{B}} U_{\text{B}}} \left( \frac{x_{\text{B}}}{\Phi_{\text{B}} r_{\text{A}}} + \frac{x_{\text{A}}}{\Phi_{\text{A}} r_{\text{B}}} \right) \right. \\ &+ \frac{\overline{U}_{\text{B}} x_{\text{B}} \Phi_{\text{B}_{1}}}{\Phi_{\text{B}}} \left( 2 - r_{\text{A}} r_{\text{B}} K_{\text{A}\text{B}}^{2} \Phi_{\text{A}_{1}} \Phi_{\text{B}_{1}} U_{\text{A}} U_{\text{B}} \right) + \frac{U_{\text{A}} \overline{U}_{\text{B}} x_{\text{A}} \Phi_{\text{A}_{1}}}{U_{\text{B}} \Phi_{\text{A}}} \right\} \end{split}$$

$$+h_{AB}\left(\left\{\frac{x_{B}}{\Phi_{B}r_{A}}+\frac{x_{A}}{\Phi_{A}r_{B}}\right)\frac{\left(1+r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}\right)}{K_{AB}}\right.$$
$$\left.+2\left(\frac{U_{A}x_{A}\Phi_{A_{1}}}{\Phi_{A}}+\frac{U_{B}x_{B}\Phi_{B_{1}}}{\Phi_{B}}\right)\right\}\right]$$
$$\times\frac{r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}}{\left(1-r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}\right)^{2}}$$
(6)

where  $\overline{U}_{A}$ ,  $U_{A}$ ,  $\overline{U}_{B}$  and  $U_{B}$  are expressed by

$$\overline{U}_{A} = K_{A} \Phi_{A_{1}} / \left(1 - K_{A} \Phi_{A_{1}}\right)^{2} \tag{7}$$

$$\overline{U}_{A} = 1/(1 - K_{A}\Phi_{A_{1}})$$
(8)

$$\overline{U}_{\mathbf{B}} = K_{\mathbf{B}} \Phi_{\mathbf{B}_{1}} / \left(1 - K_{\mathbf{B}} \Phi_{\mathbf{B}_{1}}\right)^{2}$$
(9)

$$U_{\rm B} = 1/(1 - K_{\rm B}\Phi_{\rm B_1}) \tag{10}$$

The monomer segment fractions of alcohols,  $\Phi_{A_1}$  and  $\Phi_{B_1}$ , are obtained by simultaneous solution of the following mass balance eqns. (1)

$$\Phi_{A} = \overline{S}_{A} + \frac{r_{A}K_{AB}\overline{S}_{A}S_{B}}{\left(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}\right)^{2}} \times \left[2 + r_{B}K_{AB}S_{A}\left(2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}\right) + r_{A}K_{AB}S_{B}\right]$$
(11)

$$\Phi_{\rm B} = \overline{S}_{\rm B} + \frac{r_{\rm B}K_{\rm AB}S_{\rm A}S_{\rm B}}{\left(1 - r_{\rm A}r_{\rm B}K_{\rm AB}^2S_{\rm A}S_{\rm B}\right)^2} \times \left[2 + r_{\rm A}K_{\rm AB}S_{\rm B}\left(2 - r_{\rm A}r_{\rm B}K_{\rm AB}^2S_{\rm A}S_{\rm B}\right) + r_{\rm B}K_{\rm AB}S_{\rm A}\right]$$
(12)

$$\times \left[2 + r_A K_{AB} S_B \left(2 - r_A r_B K_{AB} S_A S_B\right) + r_B K_{AB} S_A\right]$$

where the symbols  $S_A$ ,  $S_A$ ,  $S_B$  and  $S_B$  are defined by

$$\overline{S}_{A} = \Phi_{A_{1}} / \left( 1 - K_{A} \Phi_{A_{1}} \right)^{2}$$
(13)

$$S_{\rm A} = \Phi_{\rm A_1} / (1 - K_{\rm A} \Phi_{\rm A_1}) \tag{14}$$

$$\bar{S}_{\rm B} = \Phi_{\rm B_1} / \left(1 - K_{\rm B} \Phi_{\rm B_1}\right)^2 \tag{15}$$

$$S_{\mathbf{B}} = \Phi_{\mathbf{B}_{1}} / \left( 1 - K_{\mathbf{B}} \Phi_{\mathbf{B}_{1}} \right) \tag{16}$$

Since the saturated hydrocarbon does not form any complexes with the alcohol,  $\Phi_C = \Phi_{C_1}$ . The monomer segment fraction of pure alcohol A,  $\Phi_{A_1}^0$ , is given by

$$\Phi_{A_1}^0 = \left[1 + 2K_A - (1 + 4K_A)^{1/2}\right] / 2K_A^2$$
(17)

 $\Phi^0_{B_1}$  is obtained analogously.

The physical contribution term is derived by applying the Gibbs-Helmholtz relation to the residual term of the UNIQUAC equation [2]

$$H_{\rm phys}^{\rm E} = -R \sum_{I} q_{I} x_{I} \frac{\sum_{J} \theta_{J} \frac{d \tau_{JI}}{\partial (1/{\rm T})}}{\sum_{J} \theta_{J} \tau_{JI}}$$
(18)

where the surface fraction  $\theta_{I}$  and the coefficient  $\tau_{II}$  are given by

$$\Phi_I = q_I x_I / \sum_J q_J x_J \tag{19}$$

$$\tau_{JI} = \exp(-a_{JI}/T) \tag{20}$$

and  $a_{II}$  could be expressed by a linear function of temperature.

$$a_{JI} = C_I + D_I (T - 273.15) \tag{21}$$

#### CALCULATED RESULTS

## **Binary** mixtures

The association constants at 50°C for pure normal aliphatic alcohols were obtained from Brandani [3]: 110.4 for ethanol; 87.0 for 1-propanol; 47.7 for 1-pentanol; 39.5 for 1-octanol; 36.8 for 1-decanol. The enthalpy of hydrogen bond formation in pure alcohols is taken as -23.2 kJ mol<sup>-1</sup>, which is equivalent to the enthalpy of dilution of ethanol in *n*-hexane at 25°C [4]. This value is assumed to be temperature-independent and provides the temperature dependence of the association constant by means of the van't Hoff equation. The pure-component structural parameters were calculated by using the method of Vera et al. [5]. Table 1 lists the solvation constants and enthalpies of complex formation. Table 2 shows the calculated results

| $\frac{-h_{AB}}{(kJ \text{ mol}^{-1})}$ |  |  |  |  |
|-----------------------------------------|--|--|--|--|
| 23.2                                    |  |  |  |  |
| 23.2                                    |  |  |  |  |
| 23.2                                    |  |  |  |  |
| 23.2                                    |  |  |  |  |
| 23.2                                    |  |  |  |  |
| 23.2                                    |  |  |  |  |
| 23.2                                    |  |  |  |  |
|                                         |  |  |  |  |

 TABLE 1

 Solvation constants and enthalpies of complex formation

| 2  |
|----|
| щ  |
| BI |
| Ţ  |
|    |

Binary results of fitting the UNIQUAC associated-solution theory to excess molar enthalpies at 25°C

| Mixture (A-B)              | No. of         | Abs. arith.                         | Parameters |          |         |          | Reference |
|----------------------------|----------------|-------------------------------------|------------|----------|---------|----------|-----------|
|                            | data<br>points | mean dev.<br>(J mol <sup>-1</sup> ) | (لا می     | لا<br>ت  | $D_{A}$ | DB       |           |
| Ethanol-1-propanol         | 15             | 2.1                                 | 0          | 0        | 0       | 0        | 7         |
| Ethanol-1-pentanol         | 13             | 4.2                                 | 0          | 0        | 0       | 0        | œ         |
| Ethanol-1-octanol          | 20             | 1.4                                 | 270.30     | - 92.35  | 2.7320  | 0.5498   | 7         |
| Ethanol-1-decanol          | 19             | 4.0                                 | 113.66     | - 341.02 | 0.0428  | -1.0865  | 7         |
| 1-Propanol-1-pentanol      | 25             | 3.3                                 | 0          | 0        | 0       | 0        | 6         |
| 1-Propanol-1-octanol       | 20             | 0.7                                 | 101.48     | - 19.91  | 0.1834  | 0.6204   | 7         |
| 1-Propanol-1-decanol       | 19             | 1.7                                 | 183.52     | - 335.68 | 0.4200  | - 1.1179 | 7         |
| <b>Ethanol-cyclohexane</b> | 20             | 2.1                                 | 15.19      | - 160.95 | -0.5433 | -0.2478  | 10        |
| Ethanol-n-heptane          | 12             | 7.9                                 | 94.02      | - 17.42  | 1.3992  | -0.8914  | 11        |
| Ethanol-n-octane           | 12             | 4.1                                 | 300.97     | 130.52   | 1.4496  | 0.1941   | 11        |
| 1-Propanol-cyclohexane     | 18             | 4.9                                 | 182.97     | - 219.29 | 0.1587  | -0.6248  | 10        |
| 1-Propanol-n-heptane       | 13             | 7.1                                 | 50.51      | - 20.98  | 0.4914  | -0.3822  | 11        |
| 1-Propanol-n-octane        | 13             | 7.7                                 | 270.22     | -113.17  | 1.1881  | -0.5423  | 11        |
| 1-Propanol n-tetradecane   | 14             | 7.0                                 | 84.07      | - 40.46  | 1.7224  | - 1.1943 | 11        |
| 1-Pentanol-n-heptane       | 14             | 13.2                                | 215.35     | - 110.50 | 1.0058  | -0.5260  | 11        |
| 1-Pentanol-n-octane        | 13             | 14.2                                | 363.60     | -100.01  | 1.5311  | -0.4515  | 11        |
| 1-Pentanol-n-tetradecane   | 13             | 6.2                                 | 221.89     | - 212.91 | 2.8504  | - 1.5965 | 11        |
| 1-Octanol-n-heptane        | 20             | 5.8                                 | 315.20     | - 36.30  | 1.2949  | -0.2105  | 12        |
| 1-Octanol-n-octane         | 14             | 11.9                                | 19.86      | -176.02  | -0.0413 | -0.5731  | 11        |
| 1-Octanol-n-tetradecane    | 14             | 16.5                                | 192.18     | - 13.48  | 0.0896  | -0.1925  | 11        |
| 1-Decanol-n-heptane        | 19             | 6.9                                 | 283.76     | - 61.73  | 1.1587  | -0.2953  | 13        |
| 1-Decanol-n-octane         | 20             | 9.2                                 | 118.10     | - 305.49 | 0.3267  | -1.0721  | 13        |
| 1-Decanoln-tetradecane     | 14             | 18.3                                | 105.39     | 14.87    | 0.5739  | -0.1065  | 11        |
|                            |                |                                     |            |          |         |          |           |



Fig. 1. Comparison of experimental and calculated excess molar enthalpies for mixtures containing ethanol at 25°C. Calculated (——). Experimental:  $\bullet$ , ethanol-1-propanol [7];  $\blacksquare$ , ethanol-1-pentanol [8];  $\blacktriangle$ , ethanol-1-octanol [7]; O, ethanol-1-decanol [7].

obtained for binary alcohol-alcohol and alcohol-saturated hydrocarbon mixtures. In ethanol-1-propanol, ethanol-1-pentanol and 1-propanol-1-pentanol mixtures, the physical contribution was neglected and only the chemical contribution was allowed for. If alcohols differ significantly from each other as to the number of carbon atoms present in their molecules, the chemical contribution is not sufficient for nonideality and the physical contribution term must be included for good description of the excess enthalpy for alcohol-alcohol mixtures. The calculated results are compared with the experimental data of alcohol-alcohol mixtures in Figs. 1 and 2.

## Ternary alcohol-saturated hydrocarbon mixtures

Table 3 presents the ternary predicted results for 18 mixtures containing two alcohols and one saturated hydrocarbon by using the binary parameters listed in Tables 1 and 2, together with those previously obtained by Nagata and Gotoh [6], who assumed only the formation of  $A_1B_1$ . Table 3 shows clearly that the present model gives generally the smaller deviations between the calculated and experimental excess molar enthalpies than those of the previous model [6], except for that of 1-propanol-1-octanol-*n*-octane.

| ŝ  |
|----|
| щ  |
| BI |
| IA |

Predicted results of excess enthalpies for ternary mixtures containing two alcohols and one saturated hydrocarbon at 25°C

| Mixture                             | No. of | Abs. arith.              | mean deviations |                              |       | Reference |
|-------------------------------------|--------|--------------------------|-----------------|------------------------------|-------|-----------|
|                                     | data   | $\Delta H^{\rm E}$ (J mo | [1]             | $\Delta H^{\rm E}/H^{\rm E}$ | (%)   |           |
|                                     | pourts | I a                      | q II            | I a                          | q II  |           |
| Ethanol-1-propanol-cyclohexane      | 2      | 6.83                     | 19.38           | 1.76                         | 7.22  | 10        |
| Ethanol-1-propanol-n-heptane        | 32     | 12.38                    | 26.72           | 2.89                         | 6.23  | 14        |
| Ethanol-1-pentanol-n-heptane        | 35     | 11.96                    | 19.70           | 4.23                         | 6.61  | 14        |
| Ethanol-1-octanol-n-heptane         | 30     | 6.18                     | 15.32           | 1.50                         | 4.27  | 14        |
| Ethanol-1-decanol-n-heptane         | 30     | 4.72                     | 8.98            | 1.13                         | 2.48  | 14        |
| Ethanol-1-propanol-n-octane         | 30     | 6.54                     | 17.27           | 2.01                         | 4.40  | 14        |
| Ethanol-1-pentanol-n-octane         | 30     | 18.08                    | 41.23           | 4.95                         | 12.82 | 14        |
| Ethanol-1-octanol-n-octane          | 30     | 18.77                    | 21.13           | 5.03                         | 5.44  | 14        |
| Ethanol-1-decanol-n-octane          | 30     | 19.98                    | 22.94           | 5.49                         | 5.94  | 14        |
| 1-Propanol-1-pentanoi-n-heptane     | 30     | 8.25                     | 9.73            | 2.77                         | 2.56  | 14        |
| 1-Propanol-1-octanol-n-heptane      | 35     | 8.46                     | 11.38           | 3.03                         | 3.35  | 14        |
| 1-Propanol-1-decanol-n-heptane      | 30     | 7.20                     | 14.95           | 1.72                         | 3.81  | 14        |
| 1-Propanol-1-pentanol-n-octane      | 37     | 14.41                    | 16.35           | 3.55                         | 3.59  | 14        |
| 1-Propanol-1-octanol-n-octane       | 30     | 11.60                    | 8.96            | 3.26                         | 2.50  | 14        |
| 1-Propanol-1-decanol-n-octane       | 30     | 8.52                     | 16.13           | 2.05                         | 4.28  | 14        |
| 1-Propanol-1-pentanol-n-tetradecane | 30     | 10.61                    | 19.96           | 2.63                         | 4.32  | 14        |
| 1-Propanol-1-octanol-n-tetradecane  | 35     | 9.19                     | 21.58           | 2.39                         | 3.94  | 14        |
| 1-Propanol-1-decanol-n-tetradecane  | 30     | 10.42                    | 23.36           | 1.67                         | 4.21  | 14        |
| Overall mean deviation              |        | 10.79                    | 18.62           | 2.89                         | 4.89  |           |
|                                     |        |                          |                 |                              |       |           |

<sup>a</sup> I, this work. <sup>b</sup> II, Nagata and Gotoh [6].



Fig. 2. Comparison of experimental and calculated excess molar enthalpies for mixtures containing 1-propanol at 25°C. Calculated (——). Experimental:  $\blacksquare$ , 1-propanol-1-pentanol [9];  $\triangle$ , 1-propanol-1-octanol [7];  $\bigcirc$ , 1-propanol-1-decanol [7].

Pando et al. [15] proposed an association model for the excess enthalpy of binary alcohol-alcohol mixtures and did not apply the model to ternary mixtures containing two alcohols and one saturated hydrocarbon.

In conclusion, the present model has good quality in the correlation of excess molar enthalpies for binary alcohol-alcohol mixtures as well as the prediction of ternary excess molar enthalpies for mixtures containing two alcohols and one saturated hydrocarbon.

## LIST OF SYMBOLS

| A, B, C                        | alcohols and saturated hydrocarbon                                      |
|--------------------------------|-------------------------------------------------------------------------|
| $\mathbf{A}_1, \mathbf{A}_1$   | monomer and <i>i</i> -mer of alcohol A                                  |
| $\mathbf{A}_{i}\mathbf{B}_{i}$ | complex composed of alcohol A <i>i</i> -mer and alcohol B <i>j</i> -mer |
| a <sub>11</sub>                | binary interaction parameter                                            |
| $\mathbf{B}_1, \mathbf{B}_1$   | monomer and <i>i</i> -mer of alcohol B                                  |
| $C_I, D_I$                     | coefficients of eqn. (21)                                               |
| $\hat{H_{f}}$                  | total enthalpy of complex formation                                     |
| $H^{\rm E}$                    | excess molar enthalpy                                                   |
| $h_{\rm A}, h_{\rm B}$         | enthalpies of hydrogen bond formation of alcohols A and B               |

| enthalpy of complex formation between unlike alcohols    |
|----------------------------------------------------------|
| association constants for pure alcohols A and B          |
| solvation constant between alcohol complexes             |
| number of moles of a particular species                  |
| molecular geometric area parameter of pure component I   |
| gas constant                                             |
| molecular geometric volume parameter of pure component I |
| sums as defined by eqns. (14) and (16)                   |
| sums as defined by eqns. (13) and (15)                   |
| absolute temperature                                     |
| quantities as defined by eqns. (8) and (10)              |
| quantities as defined by eqns. (7) and (9)               |
| liquid-phase mole fraction of component I                |
|                                                          |

Greek letters

| $\theta_I$   | surface fraction of component I             |
|--------------|---------------------------------------------|
| $	au_{JI}$   | coefficient as defined by $\exp(-a_{JI}/T)$ |
| $\Phi_I$     | segment fraction of component I             |
| $\Phi_{I_1}$ | monomer segment fraction of component $I$   |

Subscripts

| A, B, C                        | components A, B and C                                           |
|--------------------------------|-----------------------------------------------------------------|
| $A_1, B_1, C_1$                | monomers of components A, B and C                               |
| AB                             | binary complex                                                  |
| $\mathbf{A}_{i}\mathbf{B}_{i}$ | complex containing $i$ molecules of alcohol A and $j$ molecules |
|                                | of alcohol B                                                    |
| chem                           | chemical                                                        |
| I, J                           | components                                                      |
| i, j, k, l, m                  | i, j, k, l and m-mers of the alcohol                            |
| phys                           | physical                                                        |

Superscript

<sup>0</sup> pure alcohol reference state

## APPENDIX

We consider one mole of the ternary alcohol solution. The total enthalpy of formation of the complexes from alcohol A and alcohol B is expressed by

$$\begin{split} H_{\rm f} &= h_{\rm A} \Big\{ \sum_{i} (i-1) n_{\rm A_i} + \sum_{i} \sum_{j} (i-1) n_{\rm A_i B_j} + \sum_{i} \sum_{j} \sum_{k} \left[ (i-1) + (k-1) \right] n_{\rm A, B_i A_k} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (i-1) + (k-1) \right] n_{\rm A, B_i A_k} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (j-1) n_{\rm B, A_j} + \sum_{i} \sum_{j} \sum_{k} (j-1) n_{\rm B, A_j B_k} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (j-1) + (l-1) \right] n_{\rm B, A_j B_k A_i} + \dots \Big\} \\ &+ h_{\rm B} \Big\{ \sum_{i} (i-1) n_{\rm B_i} + \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (i-1) n_{\rm B, A_j B_k A_i} + \sum_{j} \sum_{k} \sum_{l} \left[ (i-1) n_{\rm B, A_j B_k A_i} + \dots \right] \\ &+ (k-1) \right] n_{\rm B, A_j B_k} + \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (i-1) + (k-1) \right] n_{\rm B, A_j B_k A_i} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (j-1) n_{\rm A, B_j} + \sum_{i} \sum_{j} \sum_{k} (j-1) n_{\rm A, B_j A_k} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \left[ (j-1) + (l-1) \right] n_{\rm A, B_j A_k B_l} + \dots \Big\} \\ &+ h_{\rm AB} \Big\{ \sum_{i} \sum_{j} n_{\rm A, B_j} + 2 \sum_{i} \sum_{j} \sum_{k} n_{\rm A, B_j A_k} + 3 \sum_{i} \sum_{j} \sum_{k} \sum_{l} n_{\rm A, B_j A_k B_l} \\ &+ 4 \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} n_{\rm B, A_j B_k A_i B_l A_m} + \dots \\ &+ \sum_{i} \sum_{j} n_{\rm B, A_j} + 2 \sum_{i} \sum_{j} \sum_{k} n_{\rm B, A_j B_k} + 3 \sum_{i} \sum_{j} \sum_{k} \sum_{l} n_{\rm B, A_j B_k A_l} \\ &+ 4 \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} n_{\rm B, A_j B_k A_i B_m} + \dots \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} n_{\rm B, A_j B_k A_i B_m} + \dots \Big\} \\ &= h_{\rm A}(S_1 + S_2) + h_{\rm B}(S_3 + S_4) + h_{\rm AB}S_5 \end{split}$$

where *n* is the number of moles of a particular complex and we differentiate linearly solvated alcohol complexes  $(A_iB_j)_k$  and  $(B_iA_j)_k$ , where the indices *i*, *j* and *k* go from one to infinity, because in the former a free hydroxyl group is attached to B, which is the tail molecule of  $(A_iB_j)_k$  and in the latter it belongs to A, the tail one of  $(B_iA_j)_k$ .

 $S_1$ ,  $S_2$ ,  $S_3$ ,  $S_4$  and  $S_5$  are derived as described below.

$$S_{1} = \sum_{i} (i-1)n_{A_{i}} = n_{A_{1}} \sum_{i} (i-1) (K_{A} \Phi_{A_{1}})^{i-1}$$
$$= K_{A} \Phi_{A_{1}} n_{A_{1}} / (1 - K_{A} \Phi_{A_{1}})^{2} = \overline{U}_{A} n_{A_{1}}$$
(A2)

$$\begin{split} S_{2} &= \sum_{i} \sum_{j} (i-1) n_{A,B} + \sum_{i} \sum_{j} \sum_{k} [(i-1) + (k-1)] n_{A,B,A_{k}} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{i} \sum_{l} \sum_{m} [(i-1) + (k-1)] n_{A,B,A_{k}B_{l}} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} \sum_{m} [(i-1) + (k-1) + (m-1)] n_{A,B,A_{k}B_{l},M_{m}} + \cdots \\ &+ \sum_{i} \sum_{j} (j-1) n_{B,A_{j}} + \sum_{i} \sum_{j} \sum_{k} (j-1) n_{B,A_{j}B_{k}} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} [(j-1) + (l-1)] n_{B,A_{j}B_{k}A_{l}} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} [(j-1) + (l-1)] n_{B,A_{j}B_{k}A_{l}} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} [(j-1) + (l-1)] n_{B,A_{j}B_{k}A_{l}} \\ &+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} [(j-1) + (l-1)] n_{B,A_{j}B_{k}A_{l}B_{m}} + \cdots \\ &= \frac{K_{AB}}{V} \sum_{i} (i-1) n_{A,\sum_{j}} n_{B,j} + \frac{K_{AB}^{i2}}{V^{2}} \left[ \sum_{i} (i-1) n_{A,\sum_{j}} n_{B,\sum_{k}} n_{A,i} \\ &+ \sum_{i} n_{A,\sum_{j}} n_{B,\sum_{k}} (k-1) n_{A,i} \right] + \frac{K_{AB}^{i3}}{V^{3}} \left[ \sum_{i} (i-1) n_{A,\sum_{j}} n_{B,\sum_{k}} n_{A,i} \sum_{l} n_{B,i} \\ &+ \sum_{i} n_{A,\sum_{j}} n_{B,\sum_{k}} (k-1) n_{A,i} \sum_{l} n_{B,i} n_{A,i} \\ &+ \sum_{i} n_{A,\sum_{j}} n_{B,\sum_{k}} (k-1) n_{A,i} \sum_{l} n_{B,\sum_{k}} n_{A,i} \\ &+ \sum_{i} n_{A,\sum_{j}} n_{B,\sum_{k}} (k-1) n_{A,i} \sum_{l} n_{B,\sum_{m}} n_{A,m} \\ &+ \sum_{i} n_{A,\sum_{j}} n_{B,\sum_{k}} (k-1) n_{A,i} \sum_{l} n_{B,\sum_{m}} n_{A,m} \\ &+ \sum_{i} n_{A,\sum_{j}} n_{B,\sum_{k}} (j-1) n_{A,j} + \frac{K_{AB}^{i2}}{V^{2}} \sum_{i} n_{B,\sum_{m}} (j-1) n_{A,j} \sum_{k} n_{B,i} \\ &+ \frac{K_{AB}^{iA}}{V^{3}} \left[ \sum_{i} n_{B,\sum_{j}} (j-1) n_{A,j} \sum_{k} n_{B,i} \sum_{l} n_{A,i} + \sum_{i} n_{B,\sum_{j} n_{A,j} \sum_{k} n_{B,i} \\ &+ \frac{K_{AB}^{iA}}{V^{3}} \left[ \sum_{i} n_{B,\sum_{j}} (j-1) n_{A,j} \sum_{k} n_{B,i} \sum_{l} n_{A,i} \sum_{m} n_{B,m} \\ &+ \sum_{i} n_{B,\sum_{i} n_{A,j} \sum_{k} n_{B,i} \sum_{l} (l-1) n_{A,j} \sum_{k} n_{B,i} \\ &+ \sum_{i} n_{A,j} \sum_{k} n_{B,i} \sum_{l} (l-1) n_{A,j} \sum_{k} n_{B,i} \\ &+ \sum_{i} n_{B,i} \sum_{i} n_{A,j} \sum_{k} n_{B,i} \\ &+ \sum_{i} n_{B,i} \sum_{i} (j-1) n_{A,j} \sum_{k} n_{B,i} \\ &+ \sum_{i} n_{B,i} \\ &+ \sum_{i} n_{B,i} \sum_{i} (j-1) n_{A,j} \sum_{k} n_{B,i} \\ &+ \sum_{i} n_{B,i} \\ &+ \sum_{i} n_{B,i} \sum_{i} (j-1) n_{A,j} \\ &+ \sum_{k} n_{B,i} \\ &+ \sum_{i} n_{B,i} \\ &+ \sum_{i} n_{B,i} \\ &+ \sum_{i} n_{B,i} \\ \\ &+ \sum_{i} n_{B,i} \\ &+ \sum_{i} n_{B,i} \\ \\ &+ \sum_$$

where  $K'_{AB} = r_A r_B K_{AB}$  and V is the true molar volume of the solution. We

insert 
$$\overline{U}_{A}$$
,  $U_{A}$ ,  $\overline{U}_{B}$  and  $U_{B}$  as defined by eqns. (7–10),  $\Phi_{A_{1}} = r_{A}n_{A_{1}}/V$  and  
 $\Phi_{B_{1}} = r_{B}n_{B_{1}}/V$  into the above equation.  
 $S_{2} = \frac{K'_{AB}}{r_{A}} \Phi_{A_{1}}n_{B_{1}}\overline{U}_{A}U_{B} + \frac{2K'^{2}_{AB}}{r_{A}r_{B}} \Phi_{A_{1}}\Phi_{B_{1}}n_{A_{1}}\overline{U}_{A}U_{B}U_{A} + \frac{2K'^{3}_{AB}}{r_{A}^{2}}r_{B}^{2}\Phi_{A_{1}}\Phi_{B_{1}}n_{B_{1}}\overline{U}_{A}U_{B}^{2}U_{A}$   
 $+ \frac{3K'^{4}_{AB}}{r_{A}^{2}r_{B}^{2}}\Phi_{A_{1}}^{2}\Phi_{B_{1}}^{2}n_{A_{1}}\overline{U}_{A}U_{B}^{2}U_{A}^{2} + \dots + \frac{K'_{AB}}{r_{B}}\Phi_{B_{1}}n_{A_{1}}\overline{U}_{A}U_{B}$   
 $+ \frac{K'^{2}_{AB}}{r_{B}r_{A}^{2}}\Phi_{B_{1}}^{2}\Phi_{A_{1}}n_{B_{1}}\overline{U}_{A}U_{B}^{2} + \frac{2K'^{3}_{AB}}{r_{B}^{2}r_{A}}\Phi_{B_{1}}^{2}\Phi_{A_{1}}n_{A_{1}}\overline{U}_{A}U_{B}^{2}U_{A}$   
 $+ \frac{2K'^{4}_{AB}}{r_{B}r_{A}^{2}}\Phi_{B_{1}}^{2}\Phi_{A_{1}}n_{B_{1}}\overline{U}_{A}U_{B}^{2} + \frac{2K'^{3}_{AB}}{r_{B}^{2}r_{A}}\Phi_{B_{1}}^{2}\Phi_{A_{1}}n_{A_{1}}\overline{U}_{A}U_{B}^{2}U_{A}$   
 $+ \frac{2K'^{4}_{AB}}{r_{B}r_{A}^{2}}\Phi_{B_{1}}^{2}\Phi_{A_{1}}n_{B_{1}}\overline{U}_{A}U_{B}^{3}U_{A} + \dots$   
 $= r_{B}K_{AB}\Phi_{A_{1}}n_{B_{1}}\overline{U}_{A}U_{B}\sum_{i}i(r_{A}r_{B}K^{2}_{AB}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B})^{i-1}$   
 $+ \overline{U}_{A}n_{A_{1}}\sum_{i}(i+1)(r_{A}r_{B}K^{2}_{AB}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B})^{i}$   
 $+ r_{A}K_{AB}\Phi_{B_{1}}n_{A_{1}}\overline{U}_{A}U_{B}\sum_{i}i(r_{A}r_{B}K^{2}_{AB}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B})^{i}$   
 $+ \frac{\overline{U}_{A}}{U_{A}}U_{B}n_{B_{1}}\sum_{i}i(r_{A}r_{B}K^{2}_{AB}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B})^{i}$   
 $= \left[\frac{\overline{U}_{A}}{(K_{AB}U_{A}}\left(\frac{n_{B_{1}}}{r_{A}\Phi_{B_{1}}}+\frac{n_{A_{1}}}{r_{B}\Phi_{A_{1}}}\right) + \overline{U}_{A}n_{A_{1}}(2-r_{A}r_{B}K^{2}_{AB}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}) + \frac{\overline{U}_{A}U_{B}n_{B_{1}}}{U_{A}}\right]$   
 $\times \frac{r_{A}r_{B}K^{2}_{AB}\Phi_{A}\Phi_{A}\Phi_{B}U_{A}U_{B}}{(1-r_{A}r_{B}K^{2}_{AB}\Phi_{A}\Phi_{B}U_{A}U_{B})^{2}}$ 
(A3)

Similarly we can derive the sums of  $S_3$ ,  $S_4$  and  $S_5$ .

$$S_{3} = \sum_{i} (i-1)n_{B_{i}} = K_{B}\Phi_{B_{1}}n_{B_{1}}/(1-K_{B}\Phi_{B_{1}})^{2} = \overline{U}_{B}n_{B_{1}}$$
(A4)  

$$S_{4} = \sum_{i} \sum_{j} (i-1)n_{B,A_{j}} + \sum_{i} \sum_{j} \sum_{k} [(i-1) + (k-1)]n_{B,A_{j}B_{k}} + \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{i} [(i-1) + (k-1)]n_{B,A_{j}B_{k}A_{l}} + \sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} [(i-1) + (k-1) + (m-1)]n_{B,A_{j}B_{k}A_{l}B_{m}} + \dots$$

$$+\sum_{i}\sum_{j}(j-1)n_{\mathbf{A}_{i}\mathbf{B}_{j}}+\sum_{i}\sum_{j}\sum_{k}(j-1)n_{\mathbf{A}_{i}\mathbf{B}_{j}\mathbf{A}_{k}}$$

$$+\sum_{i}\sum_{j}\sum_{k}\sum_{l}\left[(j-1)+(l-1)\right]n_{A_{i}B_{j}A_{k}B_{l}}$$

$$+\sum_{i}\sum_{j}\sum_{k}\sum_{l}\sum_{m}\left[(j-1)+(l-1)\right]n_{A_{i}B_{j}A_{k}B_{l}}+\dots$$

$$=\left[\frac{\overline{U}_{B}}{K_{AB}U_{B}}\left(\frac{n_{B_{1}}}{r_{A}\Phi_{B_{1}}}+\frac{n_{A_{1}}}{r_{B}\Phi_{A_{1}}}\right)+\overline{U}_{B}n_{B_{1}}\left(2-r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}\right)+\frac{\overline{U}_{B}U_{A}n_{A_{1}}}{U_{B}}\right]$$

$$\times\frac{r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}}{\left(1-r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}\right)^{2}}$$
(A5)

$$\begin{split} S_{5} &= \sum_{i} \sum_{j} n_{A,B_{j}} + 2\sum_{i} \sum_{j} \sum_{k} n_{A,BA_{k}} + 3\sum_{i} \sum_{j} \sum_{k} \sum_{l} n_{A,BA_{k}B_{l}} \\ &+ 4\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} n_{A,BA_{k}B_{k}} + \dots + \sum_{i} \sum_{j} n_{BA_{j}} + 2\sum_{i} \sum_{j} \sum_{k} n_{BA_{j}B_{k}} \\ &+ 3\sum_{i} \sum_{j} \sum_{k} \sum_{l} n_{BA_{j}B_{k}A_{l}} + 4\sum_{i} \sum_{j} \sum_{k} \sum_{l} \sum_{m} n_{BA_{j}B_{k}A_{l}B_{m}} + \dots \\ &= \frac{K_{AB}}{V} \sum_{i} n_{A,\sum_{j} n_{B,j}} \sum_{k} n_{B,\sum_{j} n_{A,\sum_{j} n_{B,j}} n_{B,j} \sum_{k} n_{A,\sum_{j} n_{B,j}} n_{A,j} n_{B,\sum_{j} n_{A,j}} n_{A,j} n_{B,j} n_{A,j} n_{A,j} n_{B,j} n_{A,j} n_{A,j} n_{B,j} n_{A,j} n_{B,j} n_{A,j} n_{A,j} n_{B,j} n_{A,j} n_{A,j} n_{B,j} n_{A,j} n_{A,j} n_{B,j} n_{A,j} n_{A,$$

$$= \left[ \left( \frac{n_{B_{1}}}{r_{A}\Phi_{B_{1}}} + \frac{n_{A_{1}}}{r_{B}\Phi_{A_{1}}} \right) \frac{\left( 1 + r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B} \right)}{K_{AB}} + 2\left( U_{A}n_{A_{1}} + U_{B}n_{B_{1}} \right) \right] \frac{r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B}}{\left( 1 - r_{A}r_{B}K_{AB}^{2}\Phi_{A_{1}}\Phi_{B_{1}}U_{A}U_{B} \right)^{2}}$$
(A6)

It is necessary to express  $n_{A_1}$  in terms of  $\Phi_{A_1}$ ,  $x_A$  and  $\Phi_A$ . The following molecular balances can be written.

$$x_{A} = N_{1} + N_{2} + N_{3} + \dots = \sum_{i} N_{i}$$

$$= \sum_{i} in_{A_{i}} + \sum_{i} \sum_{j} in_{A_{i}B_{j}} + \sum_{i} \sum_{j} \sum_{k} (i+k)n_{A_{i}B_{j}A_{k}}$$

$$+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} (i+k)n_{A_{i}B_{j}A_{k}B_{l}} + \dots + \sum_{i} \sum_{j} jn_{B_{i}A_{j}}$$

$$+ \sum_{i} \sum_{j} \sum_{k} jn_{B_{i}A_{j}B_{k}} + \sum_{i} \sum_{j} \sum_{k} \sum_{l} (j+1)n_{B_{i}A_{j}B_{k}A_{l}} + \dots$$
(A7)
$$\Phi_{A} = F_{1} + F_{2} + F_{3} + \dots = \sum_{i} F_{i}$$

$$= \sum_{i} \Phi_{A_{i}} + \sum_{i} \sum_{j} \Phi_{A_{i}B_{j}} \frac{r_{A_{i}}}{r_{A_{i}B_{j}}} + \sum_{i} \sum_{j} \sum_{k} \Phi_{A_{i}B_{j}A_{k}} \frac{r_{A_{i}A_{k}}}{r_{A_{i}B_{j}A_{k}}}$$
$$+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \Phi_{A_{i}B_{j}A_{k}B_{l}} \frac{r_{A_{i}A_{k}}}{r_{A_{i}B_{j}A_{k}B_{l}}} + \dots$$
$$+ \sum_{i} \sum_{j} \Phi_{B_{i}A_{j}} \frac{r_{A_{j}}}{r_{B_{i}A_{j}}} + \sum_{i} \sum_{j} \sum_{k} \Phi_{B_{i}A_{j}B_{k}} \frac{r_{A_{i}}}{r_{B_{i}A_{j}B_{k}}}$$
$$+ \sum_{i} \sum_{j} \sum_{k} \sum_{l} \Phi_{B_{i}A_{j}B_{k}A_{l}} \frac{r_{A_{i}A_{k}}}{r_{B_{i}A_{j}B_{k}A_{l}}} + \dots$$
(A8)

where

$$N_1 = \sum_i i n_{\mathbf{A}_i} \tag{A9}$$

$$F_{1} = \sum_{i} \Phi_{A_{i}} = \sum_{i} n_{A_{i}} r_{A_{i}} / V = \sum_{i} i r_{A} n_{A_{i}} / V = \frac{r_{A}}{V} \sum_{i} i n_{A_{i}}$$
(A10)

$$N_2 = \sum_i \sum_j i n_{\mathbf{A}_i, \mathbf{B}_j} \tag{A11}$$

$$F_{2} = \sum_{i} \sum_{j} \Phi_{A_{i}B_{j}} \frac{r_{A_{i}}}{r_{A_{i}B_{j}}} = \frac{r_{A}}{V} \sum_{i} \sum_{j} in_{A_{i}B_{j}}$$
(A12)

$$N_{3} = \sum_{i} \sum_{j} \sum_{k} (i+k) n_{A_{i}B_{j}A_{k}}$$
(A13)

$$F_{3} = \sum_{i} \sum_{j} \sum_{k} \Phi_{A_{i}B_{j}A_{k}} \frac{r_{A_{i}A_{k}}}{r_{A_{i}B_{j}A_{k}}} = \sum_{i} \sum_{j} \sum_{k} \frac{n_{A_{i}B_{j}A_{k}}r_{A_{i}B_{j}A_{k}}}{V} \frac{(i+k)r_{A}}{r_{A_{i}B_{j}A_{k}}}$$
$$= \frac{r_{A}}{V} \sum_{i} \sum_{j} \sum_{k} (i+k)n_{A_{i}B_{j}A_{k}}$$
(A14)

and so on.

Then the ratio of  $N_i$  to  $F_i$  gives

$$\frac{N_1}{F_1} = \frac{N_2}{F_2} = \frac{N_3}{F_3} = \frac{N_1 + N_2 + N_3 + \dots}{F_1 + F_2 + F_3 + \dots} = \frac{x_A}{\Phi_A} = \frac{V}{r_A} = \frac{n_{A_1}}{\Phi_{A_1}}$$
(A15)

In the same way as described above, we can obtain

$$\frac{x_{\rm B}}{\Phi_{\rm B}} = \frac{n_{\rm B_1}}{\Phi_{\rm B_1}} \tag{A16}$$

Inserting eqns. (A2-A6), (A15) and (A16) into eqn. (A1) yields

$$H_{f} = h_{A} x_{A} \overline{U}_{A} \frac{\Phi_{A_{1}}}{\Phi_{A}} + h_{B} x_{B} \overline{U}_{B} \frac{\Phi_{B_{1}}}{\Phi_{B}}$$

$$+ \left\{ h_{A} \left[ \frac{\overline{U}_{A}}{K_{AB} U_{A}} \left( \frac{x_{B}}{\Phi_{B} r_{A}} + \frac{x_{A}}{\Phi_{A} r_{B}} \right) + \frac{\overline{U}_{A} x_{A} \Phi_{A_{1}}}{\Phi_{A}} \left( 2 - r_{A} r_{B} K_{AB}^{2} \Phi_{A_{1}} \Phi_{B_{1}} U_{A} U_{B} \right) \right.$$

$$+ \frac{\overline{U}_{A} U_{B} x_{B} \Phi_{B_{1}}}{U_{A} \Phi_{B}} \right] + h_{B} \left[ \frac{\overline{U}_{B}}{K_{AB} U_{B}} \left( \frac{x_{B}}{\Phi_{B} r_{A}} + \frac{x_{A}}{\Phi_{A} r_{B}} \right) \right]$$

$$+ \frac{\overline{U}_{B} x_{B} \Phi_{B_{1}}}{\Phi_{B}} \left( 2 - r_{A} r_{B} K_{AB}^{2} \Phi_{A_{1}} \Phi_{B_{1}} U_{A} U_{B} \right) + \frac{U_{A} \overline{U}_{B} x_{A} \Phi_{A_{1}}}{U_{B} \Phi_{A}} \right]$$

$$+ h_{AB} \left[ \left( \frac{x_{B}}{\Phi_{B} r_{A}} + \frac{x_{A}}{\Phi_{A} r_{B}} \right) \frac{\left( 1 + r_{A} r_{B} K_{AB}^{2} \Phi_{A_{1}} \Phi_{B_{1}} U_{A} U_{B} \right)}{K_{AB}} \right]$$

$$+ 2 \left( \frac{U_{A} x_{A} \Phi_{A_{1}}}{\Phi_{A}} + \frac{U_{B} x_{B} \Phi_{B_{1}}}{\Phi_{B}} \right) \right] \right\} \frac{r_{A} r_{B} K_{AB}^{2} \Phi_{A_{1}} \Phi_{B_{1}} U_{A} U_{B}}{\left( 1 - r_{A} r_{B} K_{AB}^{2} \Phi_{A_{1}} \Phi_{B_{1}} U_{A} U_{B} \right)^{2}}$$

$$(A17)$$

At pure alcohol states  $H_f$  reduces to  $H_{fA}^0$  and  $H_{fB}^0$ , respectively.

$$H_{fA}^{0} = \frac{h_{A}K_{A}\Phi_{A_{1}}^{02}}{\left(1 - K_{A}\Phi_{A_{1}}^{0}\right)^{2}} = h_{A}\overline{U}_{A}^{0}\Phi_{A_{1}}^{0}$$
(A18)

$$H_{\rm fB}^{0} = \frac{h_{\rm B} K_{\rm B} \Phi_{\rm B_{l}}^{02}}{\left(1 - K_{\rm B} \Phi_{\rm B_{l}}^{0}\right)^{2}} = h_{\rm B} \overline{U}_{\rm B}^{0} \Phi_{\rm B_{l}}^{0} \tag{A19}$$

The above equations are not equal to those based on an assumption of volume change of mixing [16].

#### REFERENCES

- 1 I. Nagata and K. Ohtsubo, Thermochim. Acta, 102 (1986) 267.
- 2 D.S. Abrams and J.M. Prausnitz, AIChE J., 21 (1975) 116.
- 3 V. Brandani, Fluid Phase Equilibria, 12 (1983) 87.
- 4 R.H. Stokes and C. Burfitt, J. Chem. Thermodyn., 5 (1973) 623.
- 5 J.H. Vera, S.G. Sayegh and G.A. Ratcliff, Fluid Phase Equilibria, 1 (1977) 113.
- 6 I. Nagata and K. Gotoh, Thermochim. Acta, 99 (1985) 145.
- 7 H.D. Pflug, A.E. Pope and G.C. Benson, J. Chem. Eng. Data, 13 (1968) 408.
- 8 M.I. Paz-Andrade, L. Romani and F. Gonzales, An. Quim., 70 (1974) 314.
- 9 H.H. Sun, J.J. Christensen, R.H. Izatt and R.W. Hanks, J. Chem. Thermodyn., 12 (1980) 95.
- 10 I. Nagata and K. Kazuma, J. Chem. Eng. Data, 22 (1977) 79.
- 11 R.S. Ramalho and M. Ruel, Can. J. Chem. Eng., 46 (1968) 456.
- 12 G. Geiseler, K. Quitzsch, J.H. Hesselbach and K. Schmidt, Z. Phys. Chem., Neue Folge, 60 (1968) 41.
- 13 M.K. Kumaran and G.C. Benson, J. Chem. Thermodyn., 16 (1984) 175.
- 14 R.S. Ramalho and M. Ruel, Can. J. Chem. Eng., 46 (1968) 467.
- 15 C. Pando, J.A.R. Renuncio, R.W. Hanks and J.J. Christensen, Ind. Eng. Chem., Process Des. Dev., 23 (1984) 73.
- 16 T. Hofman and I. Nagata, Chem. Eng. Sci., to be published.